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Abstract

The incompressible steady three-dimensional flow in a two-
sided anti-symmetrically lid-driven cavity and the motion of a
finite-size spherical particle is investigated. The flow field is
calculated numerically using a fully spectral code allowing to
identify regions of chaotic and regular streamlines. The motion
of a finite-size particle which is density-matched to the fluid is
calculated approximating its motion by advection in the bulk
and by inelastic collisions near the boundaries. The limit cycle
found for the particle motion is confirmed by experiments using
similar parameters. The results demonstrate the general impor-
tance of particle—boundary interactions for the creation of par-
ticle accumulation structures which can exists in a whole class
of incompressible steady three-dimensional flows.

Introduction

It is well known that chaotic and regular streamlines can co-
exist in steady three-dimensional incompressible Navier-Stokes
flows [17, 4]. If the steady three-dimensional flow bifurcates
from a steady two-dimensional flow the streamlines usually
become chaotic from the boundaries [5], with quasiperiodic
motion restricted to Kolmogorov-Arnold-Moser (KAM) tori.
When the chaotic layer between the KAM tori and the boundary
is locally thin, a suspended particle can be trapped in or near the
regular region [10, 15, 14]. In case many particles are trapped
the corresponding periodic orbit or the quasiperiodic particle
orbits can easily be identified visually in experiments. The
emerging dissipative structures, first observed in thermocapil-
lary liquid bridges [19], are called particle-accumulation struc-
tures (PAS) [23, 20]. While a particle trapping can be caused
entirely by inertia due to the density difference between parti-
cle and fluid [24, 16], the accumulation can be more rapid if it
is assisted or even exclusively caused by the repulsive forces a
particle experiences close to a boundary [18, 16].

Here we consider the steady flow in a two-sided anti-
symmetrically lid-driven cavity [3]. A three-dimensional cel-
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Figure 1: Streamlines of the two-dimensional flow at criticality
Re= Re; = 21153 for aspect ratid = 1.7. The boundary at
the left and the right move upward and downward, respectively.
Dot and diamonds indicate hyperbolic and elliptic stagnation
points, respectively.

lular flow arises due to the elliptic instability of the basic two-
dimensional strained vortex [12, 1]. We discuss the topolog-
ical features of the flow including the KAM tori and numer-
ically simulate the motion of neutrally-buoyant particles sub-
ject to particle-boundary interaction. The numerically predicted
particle-motion attractors are compared with experimental data.

Definition of the problem

We consider a Newtonian fluid with density and kinematic
viscosityv in a cavity of rectangular cross-section infinitely ex-
tended in direction normal to it. The fluid motion is driven by
two facing walls which move tangentially in opposite directions
with the same constant velocity magnitude(figure 1). The
steady motion is governed by the incompressible Navier—Stokes
and continuity equations

U-0d= —Op+ 00,
U=0.

(1a)
(1b)

where we use the length, velocity and pressure stalet and
prv2/h2, respectively, wherk is the height of the cavity. In the
(x,y) plane the boundary conditions aligx,y = +£1/2,7) =0,

U(x =+l /2,y,z) = FRe, wherel’ = d/h = 1.7 is the aspect
ratio (width-to-height ratio) and the Reynolds number is defined
as
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Figure 1 shows streamlines of the basic flow at criticality. As the
Reynolds number is increased beyond Re= 1.7) = 21153

the flow becomes three-dimensional [1] with respect to a steady
cellular flow. In the third(z) direction we thus impose pe-
riodic boundary conditionsi(x,y,A/2) = U(x,y,—A/2), where

A =Ac = 2.73is selected as the critical wavelength for the onset
of the three-dimensional steady flow. The supercritical steady
rectangular convection cells are very robust for a large range of
Reynolds numbers [6].

Solution techniques

Equations (1a) are solved with a full spectfal— Py_» method

[7] using Chebyshev polynomials kandy and harmonics in

z To reduce the corner singularities the analytical approxima-
tion up to second order [8, 9] of the asymptotic solution to the
corner flow have been taken into account. The code has been
extensively tested and verified [2]. For all calculations a resolu-
tion of 128 collocation points was used.

To calculate the streamlineX(t) the advection equation

X =(x,y,2) is solved using a 4th-/5th-order Runge—Kutta
Dormand-Prince method with adaptive time stepping. The ab-
solute and relative errors per time step are always less than
10-19, To solve the advection equation the flow needs to be in-
terpolated. Depending on the accuracy required either a linear
interpolation is employed between the functional values on the
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Figure 2: A pair of KAM tori for Re= 400.

spectral grid, or the full spectral approximation is used which is
computationally more expensive.

In order to model the motion of density-matched finite-size
spherical particles moving in the cavity, the particle—surface in-
teraction (PSI) model is used [10, 14]. In this model particles
move like fluid elements except near the boundaries where they
are assumed to experience an inelastic collision in direction nor-
mal to the walls when their centroids approach any boundary
up to a minimum distance given by the particle radaum-
creased by a lubrication g&@p This yields a layer on each wall,
inaccessible by the particle centroids, of thicknAss a-+ 9,
called interaction length. After the collision and as long as the
wall-normal velocity is directed toward the wall the particle is
assumed to slide along the wall until the wall-normal velocity
turns inward. At this point the particle is released to the bulk.

Results

Fluid motion

The nonlinear steady fluid motion in a single rectangular con-
vective cell comprising half a wavelength of the flow pattern
is found to be point symmetric with respect to the center of the
cell, as in experiments [6]. The flow consists of chaotic and reg-
ular streamlines. As the Reynolds number is increased beyond
the critical value chaotic streamlines invade the cell from the
boundaries. The regular motion is confined to KAM tori which
were identified using Poincarsections. From these we could
identify the largest reconstructible KAM tori. For low supercrit-
ical Reynolds numbers we find a single pair of point-symmetric
KAM tori. An example is shown in figure 2 for Re 400. As

the Reynolds number is increased each torus splits into two. For
Re= 700, e.g., two of the resulting tori are similar, but more
slender, as the ones shown in figure 2. The two other tori are
each winding about the respective main tori with winding num-
ber one (not shown).

The minimum distancé of the closed streamlines inside of
the KAM tori from the boundary is an important parameter for
accumulation of particles in the framework of the PSI model
[15]. In all cases the minimum distance of the closed stream-
lines arises with respect to the moving wall. ForRd00 we
find AL = 0.0711.

Particle motion

Inertia effects on the particle motion are very weak for small
particles density-matched to the fluid. In that case the time re-
quired for inertial clustering scales like p/(|p — 1|St) [16],
wherep = pp/ps is the particle-to-fluid density ratio and St
2pa?/9 the viscously-scaled Stokes number watthe dimen-
sionless particle radius.
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Figure 3: Accumulation of particles (represented by small dots)
att =1 on a limit cycle (colored line) for Re- 400 andA =

A =0.0711 projected on th&, y)- (a) and(x, z)-plane (b). The
red dashed lines indicate= x*. 2500 particles have been used
with random initial conditions.

Here we are interested in the effect of the finite-particle size
alone and considgy = 1. If the variation of the velocity over
the length scale of the particle is small compared to the flow ve-
locity at its centroid a density-matched particle essentially fol-
lows the flow. We assume this condition to hold, except near
the boundaries. Therefore the particle motion is approximated
by advection in the bulk. Near the boundaries the PSI model is
applied. This type of modeling is motivated in order to capture
the key effect of the boundary on the particle motion.

According to [10] and [15] a perfect periodic attractor for the
particle motion exists in the case when the closed streamline of
a KAM torus is tangent to the collision plane characterized by
IX*| = /2—A. In that case the particles cluster on the closed
streamline. For an interaction length= A, the projection of

the positions of initially randomly distributed patrticle is shown
in figure 3 after having evolved far= 1. As in similar in-
vestigations [11, 16], the particles are assumed to move inde-
pendently of each other. The number of particles only serves
the purpose of visualization and statistical representation of the
attraction dynamics from random initial conditions which, for
dilute suspensions, is a one-particle phenomenon.

A simplified explanation of the phenomenon is as follows. Due
to the ergodicity of particles initially moving in the chaotic sea
they will eventually interact with one of the moving walls. Upon
an inelastic collision o = x* with one of the moving walls the
particle can be released to the bulk inside of the regular region.
Once in a regular region, the particle cannot escape from it any
more and will be further focussed to a limit cycle by repeated
wall interactions, as described by [10]. Depending on the par-
ticle size and the structure and location of the KAM tori this
process can be more complicated [14].
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Figure 4: Poincar section during € [0.75,1] atx = 0 of 2500
trajectories (grey dots) for Re 400 andA = 0.04. The largest
KAM torus is shown by red dots (regular streamlines). Random
initial conditions at = 0.

Within this picture the problem contains two time scales. One
time scale is related to the transfer of the particle from the
chaotic sea to the regular region. The other time scale is related
to the focussing inside the regular region. Both times scales
should be proportional to a characteristic eddy turnover time
which can be estimated &gU. The limiting process, however,

is expected to be the transfer of the particle from the chaotic to
the regular region of the flow. This process depends crucially on
the linear dimension perpendicular to the flow of the intersec-
tion set between the KAM tube and the collision plares|x|

(red dashed lines in figure 3) as well as on the degree of mixing
in the chaotic region.

If AL > A the non-inertial particles from outside of the KAM
torus which is tangent t@" in one point are attracted to this
particular KAM torus, while particles with centroids inside this
KAM torus do not interact with the boundary in the framework
of the PSI model. This attraction to a torus is shown in figure
4 for Re= 400 andA = 0.04. Such accumulation structure has
been termedubular PAS[10, 15]. If, on the other handy_ < A

we find a period doubling of the attractor (not shown), similar
as in Ref. [14] for particles in thermocapillary liquid bridges.

Experimental evidence

While the results based on particle advection and the PSI
model are quite idealized, in particular, regarding the particle—
boundary interaction, see e.g. [18], we found experimental ev-
idence for particle accumulation. For the experiments we em-
ployed the same lid-driven cavity as in Siegmann-Hegerfeld et
al. [21, 22]. In this experiment the moving walls have been
realized by rotating, parallel cylinders of relatively large radii.
The experimental aspect ratio based on the mean of the min-
imum and maximum gap widths (due to the wall curvature)
wasl” = 1.6. The cavity height was 40.1 mm and the fluid was
Baysilone silicone oil M20.

Figure 5 shows the trajectory of a particle made from polyethy-
lene with relative densitp = 0.99 and non-dimensional radius

a = 0.05 (the real particle radius was 1.995 mm) in the flow at
Re=400. Taking into account a certain, yet undetermined, lu-
brication gap between particle and walls the interaction parame-
ter must satisfyA > a = 0.05. The experiment was started from
rest with a single particle. After 30 minutes the trajectory of the
particle was determined using particle tracking. The particle
position was recorded for about 100 s at a sampling frequency
of 20Hz. This corresponds to about 35 particle revolutions in
the recirculating flow.
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Figure 5: Projection of the orbit (blue) of the centroid of a parti-
cle (size indicated by the circle) in ttie, z) plane for Re= 400.

The markerg x) are Poinca points ory = 0 of the orbit. Top

and bottom mark the boundaries of the convection cell. The
minimum cavity width (aty = 0) due to wall curvature is indi-
cated by the vertical grey lines. The red dashed lines indicates
the minimum distance a particle of radiasan have from the
moving wall at the midplang = 0.

Within the remaining small error for the particle trajectory the

particle has settled to a limit cycle. As expected from the model-
ing the limit cycle is in close neighborhood of one of the moving

walls. The lubrication gap between the particle and the moving
wall can be estimated from the particle size which is indicated
by a circle. Note that another limit cycle exists in the experi-

ment as well, which is obtained by reflecting the shown limit

cycle at the center of the cell.

The location and shape of the experimental limit cycle is in
qualitative agreement with the numerical modeling. Remain-
ing differences can be due to the slightly different aspect ratio,
the slightly curved walls in the experiment, the unknown lubri-
cation gap, and the approximations made in the numerical mod-
eling. The relatively good agreement between experimental and
numerical result suggests, however, that the fundamental mech-
anism of particle accumulation by particle—surface interaction
is well captured.

Conclusions

Numerical simulations and experiments have been carried out
for the motion of a finite-size non-inertial spherical particle in
a two-sided anti-symmetrically lid-driven cavity. It was shown
that a limit cycle for the particle motion exists. A characteris-
tic feature of the limit cycle is its vicinity to the closed stream-
line of a KAM torus of the three-dimensional steady flow which
takes the particle very close to the moving boundary. As shown
by the numerical analysis the limit cycle is essentially created
by particle—surface interactions. Inertial effects due to the den-
sity difference between particle and fluid can largely be ruled
out as a reason for the creation of the limit cycle in the experi-
ment, since the density difference of 1% is very small.

The attraction to the limit cycle is a single-particle process,
and not a collective phenomenon. In principle, many individ-
ual particles can be attracted to the same limit cycle. How-
ever, owing to the relatively large size of the particle used in
the present investigation, particle—particle interactions may not
always be negligible. The particle—particle interaction may lead
to a weakly chaotic particle motion in or near the KAM torus
up to a complete suppression of particle accumulation for large
particle volume fractions.



The results demonstrate that particle accumulation (PAS) is not

restricted to thermocapillary liquid bridges for which it has been
studied quite extensively [23, 20, 10, 13, 14]. Therefore, PAS

is a general phenomenon which can arise in three-dimensional
incompressible flows steady in some frame of reference. Fur-

thermore, our investigation for a nearly density-matched parti-
cle confirms the existence of a limit cycle by means of a non-
inertial mechanism. To clarify the relative importance of inertia
as compared to particle-surface interaction further simulations
similar to Ref. [16], and experiment for heavy particles are in
order. It would also be of interest to probe PAS in other laminar
three-dimensional flows.
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